

API GUIDE

API VERSION 4.20

 Version 4.20

Table of Contents
Summary ... 4

What’s New in this Version .. 4

Recommendations ... 4

API Endpoints .. 5

Production Endpoints ... 5

Development Endpoints ... 5

Query Process Overview ... 5

Hashing Algorithms .. 6

Salt Value ... 6

PBKDF2 ... 6

SHA256 .. 7

Query Methods ... 7

Query .. 7

Prefix-Query ... 7

Security Assurance of Query Methods ... 7

Querying the Pwned Passwords Database .. 8

The Process ... 8

Threshold ... 8

Example Passwords and Hashes .. 9

Query API Method Specifications .. 10

Method: query .. 10

Description.. 10

GET request syntax .. 10

Parameter Listing .. 10

Method: prefix-query .. 14

Description.. 14

GET request syntax .. 14

Parameter Listing .. 14

Method: update-metric ... 19

Description.. 19

GET request syntax .. 19

Parameter Listing .. 19

Webservice API Method Specifications .. 22

 Version 4.20

Method: cbl-management ... 22

Description.. 22

GET request syntax .. 22

Parameter Listing .. 22

Method: rpt-getmetrics ... 24

Description.. 24

GET request syntax .. 24

Parameter Listing .. 24

Error Code Listing .. 28

API Version History .. 33

 Version 4.20

Summary
This guide describes the use of Password RBL’s bad password blacklisting API. The service is

provided via a RESTful API over secure HTTPS transport. Customers have a choice of two hashing

algorithms that can be used to securely submit pre-hashed passwords to the API using this this web

API. This is true when sending blacklist queries to search for a match as well as when managing a

custom blacklist’s entries. Hashed representations of end-user password choices are searched for

existence in the Password RBL curated blacklist or a customer-specific blacklist.

The API only allows HTTPS GET requests. Parameters are passed to the API in the URL string. Refer

to the API method call detail later in this guide.

What’s New in this Version
This version of the Password RBL API builds upon v4.00, which added an API endpoint that authorizes

connections based on a provided API Key (token) rather than IP address (the existing method prior to

API version 4.00). Version 4.10 extends this API Key (token) requirement to the Custom Blacklist

Management API for added security.

Recommendations
When implementing the Password RBL API on your web site or application, it is important to take into

consideration all possible scenarios during your software development. Password RBL provides the

following recommendations when developing software to use the Password RBL API.

• Backups – Before changing any production code base, it is important to have good, working,

and tested backups.

• Connectivity – The Password RBL API is a hosted solution located across the Internet and is

therefore outside your completed control. It is important to consider scenarios when your

software cannot make a successful connection to the API due to any number of unforeseen

circumstances (Internet congestion, routing problems, etc.).

• API Responses – You should consider how your software will behave if the API returns an error

code, rather than a normally formatted positive or negative result. Also, if you’ve exceeded

your quota of blacklist queries on the classic IP-authorized endpoint, the API will reject your

connection and instead reply with a TCP Reset packet. The key-based API endpoint does not

behave this way (see more information in the next section).

• Certificates - Do not “hard code” or “memorize” any certificates or cryptographic keys in use by

the API. Password RBL regularly changes certificates/keys.

 Version 4.20

API Endpoints
The API is available via two production endpoints and one development API endpoint. It is important to

understand when to use each endpoint as they provide different API services and have different

connectivity requirements.

Production Endpoints

• key-api.passwordrbl.com

o This endpoint hosts the Query API that is called during end-user password events.

o This endpoint requires subscribers to provide an API Key for authorization of use.

o This endpoint supports TLS v1.2 or later

o Only one method call per HTTP connection is allowed (keepalives are disabled).

• api.passwordrbl.com

o This endpoint hosts the Query API that is called during end-user password events.

o This endpoint is firewalled to only allow access from current subscribing systems.

o This endpoint supports TLS v1.0 or later

o Only one method call per HTTP connection is allowed (keepalives are disabled).

• webservice.passwordrbl.com

o This endpoint hosts API calls used for reporting and to manage custom blacklist entries.

o This endpoint is not called during end-user password events.

o This endpoint is firewalled to allow general access via HTTPS so connections can be

made from management workstations.

o Connections are throttled to only allow, on average, two connections per second, per

source IP address. Keepalives are disabled.

Development Endpoints

• key-dev.passwordrbl.com & dev.passwordrbl.com

o These are development versions of the production endpoints noted above.

o They have the same connection restrictions as their corresponding production Query

API endpoint

o The blacklist available at this endpoint only has a few entries to use for testing code

o This endpoint is available for free to customers and potential customers so that they can

develop their Password RBL API implementation prior to beginning their subscription.

o Contact your account representative or use the Contact form on the Password RBL

website to arrange access and obtain the current DEV API documentation.

Query Process Overview
The Password RBL API only accepts pre-hashed versions of end-user password choices (the API does

not accept plaintext passwords). The API provides two methods for querying the list of bad passwords:

Query and Prefix-Query. Both methods support two industry-standard hashing algorithms as part of the

 Version 4.20

API call. This section details the hashing algorithm choices as well as a comparison of the two

available query methods.

Hashing Algorithms

The Password RBL API supports two industry-standard hashing algorithms: SHA256 and PBKDF2.

PBKDF2 is the recommended choice since it uses many rounds of iterative hashing to add security

assurances against future attempts to reverse the hash. SHA256 uses a single round of hashing but

has widespread compatibility across the industry, languages, platforms, etc. Both algorithms have

specific parameter requirements (salt value, encoding format, etc.) to be compatible with Password

RBL’s API. The below sections detail the way to use each algorithm to be compatible with the

Password RBL API.

Salt Value

It is important to note that both algorithms utilize a SALT value (defined below). The SALT value below

is the salt value you must use. Do not choose your own SALT value or choose a random or changing

SALT value.

IMPORTANT: If you do not use this specific SALT value, then every submission to the API will result in

a not-listed response.

SALT = “fe21a0daadda8301bf69a452963a2747a6c8aab4c016d9506a9af46b5f73a9ca”

PBKDF2

This is the recommended algorithm. This algorithm takes a password and SALT value as input and

then performs many rounds of iterative hashing using the SHA1 cryptographic hashing algorithm. All

parameters of the PBKDF2 algorithm, except the password, must match the parameters below:

Hash function: SHA1

Password: <provided by your customer>

SALT value: <see above>

Rounds: 30,000

Output Size: 20 bytes represented as 40 hex characters [0-9,a-f]

Example: hashvalue = PBKDF2(sha1, Password, SALT, 30000, 20)

 Version 4.20

SHA256

This algorithm is provided for compatibility. The output must be 64 hexadecimal characters and is

obtained by appending the clear text password to the salt value (above) and passing the resulting string

through the standard SHA256 algorithm.

Example: hashvalue = SHA256(concatenate(SALT, Password))

Query Methods

The Password RBL API supports two methods for querying the blacklists: Query and Prefix-Query. The

Query method is the easiest and allows you to use all features of the Query API with a single method

call. The Prefix-Query requires more client-side implementation but provides additional security

assurances that it is not possible (even for Password RBL) to ever determine the end-user’s password

choice from the API submission.

Query

This is the simplest way to use the API. You compute a hash of the password chosen by your end-user

and provide that hashvalue to the API. The API returns a Yes/No answer on whether the provided

hash exists in the blacklist. With a single API call, you can use all features of the API – metrics tracking

(TrackingID), custom blacklists, etc. This query method relies on a high number of hash iterations

(30,000) of end-user password choices prior to submission to assure subscribers that reversing the

hashes is not feasible.

Prefix-Query

Using the API via prefix-query provides an additional assurance that even Password RBL cannot

determine the original password cleartext since the API call only includes the first five [hex] characters

of the computed hash value. This API call returns all blacklist hashes that begin with the provided five

character prefix. This can be more than 50 hashes. The caller compares all returned hashes with the

originally computed hash to determine if the chosen password exists in a blacklist. If you choose to use

Prefix-Query and want to track metrics (how many times a blacklisted password was chosen), then you

must follow-up with a separate API call (update-metric) in order to increase the count of blacklist

matches or misses.

Security Assurance of Query Methods

Password RBL service architecture has callers perform cryptographic hashing of end-user chosen

passwords before performing an API call. This is by design. The API does not accept plaintext

passwords and Password RBL never attempts to determine the original plaintext from a submitted

hash. However, as a user of the Password RBL API, you want to be assured that your submissions to

the API cannot be reversed. The below table summarizes your assurances when using the API.

 Version 4.20

Algorithm
Method

SHA256 PBKDF2 @ 30,000 rounds

Query Fair Very Good

Prefix-query Excellent Excellent

Querying the Pwned Passwords Database
As of API version 3.20, the Password RBL API provides the ability for customers to query the “Pwned

Passwords” blacklist database in addition to Password RBL’s curated blacklist and optional subscriber-

specific custom blacklist. The Pwned Passwords blacklist database is a derivative of the “have I been

pwned” service maintained by Troy Hunt. While this database is maintained by a third-party and is not

as curated as the Password RBL blacklist database, it is very large (over 500 million entries). It

includes an occurrence value for each hash in the database, which allows for subscribers to require a

password (hash) to cross a specified threshold before considering it “bad enough.” Of course, querying

the Pwned Passwords blacklist database is optional.

The Process

Querying the Pwned Passwords database is easily done by computing a standard, un-salted SHA1

hash of the end-user’s chosen password and providing this hash as an additional parameter to your

existing queries to the Password RBL API. You provide the entire hashvalue when using the

Password RBL Query method or the first 5 characters of the hashvalue when using the Password RBL

Prefix-Query method.

Threshold

When using the Query method, you can also optionally provide a “threshold” parameter which requires

matching hashes to have occurred in the blacklist at least this many times before a positive match

return value is indicated. Entries in Password RBL’s curated blacklist, as well as entries in subscriber-

specific custom blacklists have a very high occurrence value associated with them since these

blacklists are highly-curated.

When using the Prefix-Query method, you do not specify the desired threshold in the query string. But,

the occurrence counts will be returned with all matching hashvalues so you can perform the threshold

comparison on the client-side of the API connection.

This Pwned Passwords database has over 500 Million unique permutation entries, but many have only

been seen in the wild one time and thus have an occurrence value of 1. There are approximately 2

Million entries that have been seen over 100 times and 12 Million entries that have been seen at least

20 times. The default threshold is 1, so that all password entries in the blacklist are considered.

Increasing the threshold value will limit matches to more commonly used bad passwords. Striking the

right balance between security and usability is always desirable.

 Version 4.20

Example Passwords and Hashes
Below you will find a list of example passwords and the correct hashvalues for the algorithms supported

by the API. This will be helpful as you develop code that implements the Password RBL API since you

must produce the correct hashvalues for the service to function as expected. If your hash function is

not producing the correct hash values, none of your queries will match on blacklist queries. Each

example password is followed by the correct PBKDF2, SHA256, and SHA1 (used by pwned

passwords) hash values.

password1

PBKDF2: 12084FC0C5C6F72E55BF377F9591B81EA47ED308

SHA256: 26B5A9EB9449EE064BAF30D8F3F7DADC8AE88A102245E073186015D52621506F

SHA1: 5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8

Password

PBKDF2: FDBE01B68456C4D86514A7203FB180D8B6974659

SHA256: 1C26C47CEA12FFE94C2C45FEFBC07F32455476EB391CD59AF1363CAC63FB4CBE

SHA1: 8BE3C943B1609FFFBFC51AAD666D0A04ADF83C9D

Password123

PBKDF2: E6BAC6413C4F8300C025B807D2643E0CEB49AF8E

SHA256: 41CDE472FA5517A8E7AACA74003715CBE91864C01451DE37AA3BB858BDA09589

SHA1: B2E98AD6F6EB8508DD6A14CFA704BAD7F05F6FB1

Pa$$w0rd

PBKDF2: D3CC91EEEF6E5553D6402C9D779C029C2991AC21

SHA256: 290DD9EF4FB0F260DE2BE0B2D38E2CDA1780D0A17144C101AF64B48C5B3F0B75

SHA1: 02726D40F378E716981C4321D60BA3A325ED6A4C

Pa$$w0rd123

PBKDF2: D7DC734F67B0399C61F667D578540FE5D21507EF

SHA256: EB8BEBC98BEE80058BAD61200752DC8EF8E969509F0BDE9A8A4601BE2F75BA31

SHA1: 20AB262F7B7286E33525711FFDC42B10244C1A98

Password123456789!

PBKDF2: 111C5F7CD576F1C239D7C1884A91084636E972B0

SHA256: E6F845AD03506188034E48D9DE7195D84F83B9C0C16EAF59DDC091913FF4F08B

SHA1: AD793F63DA84E1E9EF3845DEF7E7ED219F4CB1A5

 Version 4.20

Query API Method Specifications

Method: query

Description

This is the most simple blacklist query method. All functions of the Query API can be performed with a

single call. Using this method entails computing a hashvalue and providing that hashvalue in the API

call. You can optionally search a custom blacklist and also tag queries with a TrackingID for later

reporting. This method returns a match or no-match result and will track these metrics if a TrackingID

has been provided.

GET request syntax

https://api.passwordrbl.com/query.php?[required_param]&[optional_params]

Parameter Listing

Parameter Required Format / Value Default

apikey Yes* 40 hex characters [0-9,a-f] n/a

hashvalue Yes 40 or 64 hex characters [0-9,a-f] n/a

trackingid No 32 hex characters [0-9,a-f] n/a

blacklistid No 32 hex characters [0-9,a-f] n/a

cblonly No true | false false

apitype No string | xml | json string

pphashvalue No 40 hex characters [0-9,a-f] non

threshold No Integer 1

 * Parameter required only on key-based API endpoints. See API Endpoints section above.

Required Parameter :: apikey

This is a required parameter when this method is called from the key-based API Endpoint: key-

api.passwordrbl.com. This parameter specifies the subscriber’s API Key to authorize access to the

API. The expected format is 40 hex characters

 Version 4.20

Required Parameter :: hashvalue

This is the only required parameter and is a salted and pre-hashed representation of the password

submitted by your customer to your server. There are two industry-standard hashing algorithms to

choose from, PBKDF2 or SHA256. It is not necessary to identify which algorithm was chosen when

submitting queries to the API as each produce a different length value. PBKDF2 is preferred due to its

inherent strength against brute force password-cracking attacks, so much so that it effectively makes it

infeasible for anyone to reverse (“crack”) the hashed value back to the original plaintext. SHA256 is

provided for compatibility with systems that cannot perform the PBKDF2 algorithm. Refer to the prior

section on hashing algorithms for specific usage information.

Optional Parameter :: trackingid

This is an optional parameter. The expected format is 32 hex characters. Queries to the Password

RBL service are anonymous by default, but this prevents the service from providing customers with hit

rate metrics. The customer can always perform the tracking of metrics on their own server/site. If you

would like Password RBL to count queries to the API and how often each query results in a database

match or not, you can supply a trackingID with each query. This allows for later reporting of these

metrics using our metrics API or our online MyMetrics webpage.

Optional Parameter :: blacklistid

This is an optional parameter. The expected format is 32 hex characters. Queries that supply a

blacklistID will search for a match in the identified custom blacklist. If a match is found, a positive

response will be send back to the source. If a match is not found in the custom blacklist, then the API

continues on to search for a match in the Password RBL curated password blacklist in the same

manner that would be taken if the query did not include the blacklistID parameter.

As of version 2.1, if a query includes a blacklistID and a trackingID, then metrics will be tracked in

aggregate on the trackingID and metrics will also be tracked on the blacklistID, too. You can then use

the MyMetrics page to receive a report for the trackingID and the blacklistID.

IMPORTANT: If a blacklistID is specified but a trackingID is not, then metrics will not be tracked for the

custom blacklist. A trackingID must be specified in order to track metrics on the custom blacklist.

Optional Parameter :: cblonly

This is an optional parameter. The expected format is either “true” or “false” and the default value is

false. By default, queries that supply a blacklistID will search for a match in the specified custom

blacklist and in the Password RBL curated blacklist. Set this optional parameter to “true” and the API

will only search for a match in the specified custom blacklist.

If the option is set to “false” or if this option is omitted, then the default behavior will occur.

If this option is set to “true” but a custom blacklist is not specified, an error is returned.

 Version 4.20

Optional Parameter :: apitype

This parameter designates what format you prefer to receive responses in. The default is String-format

but XML and JSON formats are also available. Response values are listed in the following table:

Parameter Default Response Format

String Yes A single integer [0 | 1] to indicate existence in the Password RBL database
or a negative value to indicate an error in the submission to the API.

XML No Content-type: text/xml

<?xml version="1.0" encoding="utf-8" ?>
<xmlresponse>
 <returnint> [null | 0 | 1] </returnint>
 <returnbool> [null | “true” | “false”] </returnbool>
 <error_code> [null | 0 | negative integer value] </error_code>
 <error_text> [text explanation of error] </error_text>
</xmlresponse>

NOTE: If the submission is of valid syntax, the values of the <returnint> and
<returnbool> tags will have corresponding values to indicate existence of
the submitted value in the Password RBL database. The values of the
<error_code> and <error_text> tags will be null.

If the submission is of invalid syntax, the <returnint> and <returnbool> tags
will be null and the <error_code> and <error_text> tags will be filled with
values that indicate the type of error.

JSON No Content-type: application/json
{
 "jsonresponse":{
 "returnint": [null | 0 | 1] ,
 "returnbool": [null | “true” | “false”] ,
 "error_code": [null | 0 | negative integer value] ,
 "error_text": [null | text explanation of error]
 }
}

NOTE: If the submission is of valid syntax, the values of the “returnint” and
“returnbool” tags will have corresponding values to indicate existence of the
submitted value in the Password RBL database. The values of the
“error_code” and “error_text” tags will be null.

If the submission is of invalid syntax, the “returnint” and “returnbool” tags will
be null and the “error_code” and “error_text” tags will be filled with values
that indicate the type of error.

 Version 4.20

Optional Parameter :: pphashvalue

This is an optional parameter. The expected format is 40 hexadecimal characters [0-9,a-f]. This

parameter is used to provide the SHA1 hash (of the end-user’s password) to be used in querying the

pwned password blacklist database.

Optional Parameter :: threshold

This is an optional parameter. The expected format is any valid 32-bit integer number. This parameter

represents the number of times a password must have been seen any of the password blacklists before

a positive match response is received.

 Version 4.20

Method: prefix-query

Description

Use this query method to perform a blacklist query by only sending a partial hash value – a prefix of the

computed hashvalue to be searched for in the curated and/or custom blacklist. This method returns all

hashes that begin with the provided prefix string.

Each hash returned will have a number of occurrences associated with it. This number represents how

many times the password represented by this hash has been discovered. The higher the number, the

worse of a choice the associated password is. Currently, hash entries in the Password RBL curated

blacklist as well as any entries in a custom blacklist return an administratively set high number (99999).

This feature is reserved for use in a future API version.

This query mechanism provides an additional assurance that Password RBL can never obtain the

original password choice of an end-user. However, if you wish to use a TrackingID to track metrics,

you must use a second API call (see below) in order to increase the counts of your chosen TrackingID

(and/or BlacklistID) since the API cannot know if any of the returned hashvalues match the hash

originally computed by the caller.

GET request syntax

https://api.passwordrbl.com/prefix-query.php?[required_param]&[optional_params]

Parameter Listing

Parameter Required Format / Value Default

apikey Yes* 40 hex characters [0-9,a-f] n/a

hashprefix Yes 5 hex characters [0-9,a-f] n/a

hashtype Yes pbkdf2 | sha256 n/a

pphashprefix No 5 hex characters [0-9,a-f] none

apitype No string | xml | json string

blacklistid No 32 hex characters [0-9,a-f] n/a

cblonly No true | false false

eol No crlf | lf | cr | br crlf

pphashprefix No 5 hex characters [0-9,a-f] none

 * Parameter required only on key-based API endpoints. See API Endpoints section above.

 Version 4.20

Required Parameter :: apikey

This is a required parameter when this method is called from the key-based API Endpoint: key-

api.passwordrbl.com. This parameter specifies the subscriber’s API Key to authorize access to the

API. The expected format is 40 hex characters

Required Parameter :: hashprefix

This is a required parameter and is the first five (5) hex characters of the salted and pre-hashed

representation of the password. There are two industry-standard hashing algorithms to choose from,

PBKDF2 or SHA256. Since the prefix length is the same regardless of algorithm used, you must also

specify the hashtype parameter to state which algorithm was used to compute this hashprefix.

Because you are not providing the complete hash to Password RBL, you have assurances that it is

impossible for anyone, including Password RBL, to determine the end-user’s chosen password. Refer

to the prior section on hashing algorithms for specific usage information.

Required Parameter :: hashtype

This is a required parameter and the expected value is either “sha256” or “pbkdf2”. This parameter

informs the API which algorithm you used to compute the hash prefix. This is necessary since the API

requires the submitted hash prefix to be five (5) hex characters regardless of the algorithm used.

Optional Parameter :: eol

This parameter designates what character(s) you prefer to use as end of line characters. This

parameter only affects string-based response types. If XML or JSON response types are used, those

specifications dictate which end of line character are used. End of line character options are listed in

the following table:

Value Default Response Format

crlf Yes Each line will end with a carriage return and line feed characters commonly
denoted as “\r\n”. This line ending is popular on the Windows platform.

cr No Each line will end with only a carriage return character, “\r”, which is

common on the Mac platform.

lf No Each line will end with a single line feed character, “\n”, which is common

on Unix and Linux-based systems.

br No Each line will end with an HTML-style “break” – which is a collection of four
characters, “
”.

 Version 4.20

Optional Parameter :: apitype

This parameter designates what format you prefer to receive responses in. Currently, string, XML and

JSON formatting is available. Response values and examples are listed in the following table:

 Version 4.20

Parameter Default Response Format

String Yes A list of complete hash values that begin with the same 5 characters
provided in the API call, followed by a colon (:) character, and an integer
representing the number of times this password has been discovered.

If an error is being returned, a textual description of the error is provided as
well as a negative numeric error code, delimited by a colon (:) character.

XML No Content-type: text/xml

<?xml version="1.0" encoding="utf-8" ?>
<xmlresponse>
 <summary>
 <method>prefix-query</method>
 <response_count> # </response_count>
 <error_code> # </error_code>
 <error_text> </error_text>
 </summary>
 <response_data>
 <blacklist_entry>
 <hash_value>1111111111abcd23436575983123abcd </hash_value>
 <hash_count>99999</hash_count>
 </blacklist_entry>
 <blacklist_entry>
 <hash_value>2222222222abcd23436575983123abcd </hash_value>
 <hash_count>99999</hash_count>
 </blacklist_entry>
 </response_data>
</xmlresponse>

NOTE: If the submission is valid syntax, the value of the
<response_count> tag represents the number of matching hashes returned
and available in the <response_data> element. The value of the
<error_code> tag will be zero and <error_text> tag will be null.

If the submission is invalid syntax, or an error occurred, the
<response_count> tag will be NULL and the <error_code> and <error_text>
tags will be filled with values that indicate the type of error.

 Version 4.20

JSON No Content-type: application/json

{
 "jsonresponse":{
 "summary":{
 "method": "prefix-query",
 "response_count": #,
 "error_code": 0,
 "error_text": ""
 },
 "response_data": [
 {
 "hash_value": "1111111111abcd23436575983123abcd",
 "hash_count": 99999
 },
 {
 "hash_value": "2222222222abcd23436575983123abcd",
 "hash_count": 99999
 }
]
 }
}

IMPORTANT: The “response_data” element is a JSON array of objects.

If the submission is valid syntax, the value of the “response_count” key
represents the number of matching hashes returned and available in the
“response_data” array. The value of the “error_code” key will be zero and
“error_text” key will be empty.

If the submission is invalid syntax, or an error occurred, the
“response_count” key will be NULL and the “error_code” and “error_text”
keys will be filled with values that indicate the type of error.

Optional Parameter :: pphashprefix

This is an optional parameter. The expected format is 5 hexadecimal characters [0-9,a-f]. This

parameter is used to provide the first 5 characters of the SHA1 hash (of the end-user’s password) to be

used in querying the pwned password blacklist database.

 Version 4.20

Method: update-metric

Description

Use this method to update metrics (count) for a specified TrackingID. This method commonly follows a

call to the prefix-query method in order to update metrics associated with a subscriber’s TrackingID.

GET request syntax

https://api.passwordrbl.com/update-metric.php?[required_param]&[optional_params]

Parameter Listing

Parameter Required Format / Value Default

apikey Yes* 40 hex characters [0-9,a-f] n/a

metric Yes hit | miss n/a

trackingid Yes 32 hex characters [0-9,a-f] n/a

blacklistid No 32 hex characters [0-9,a-f] n/a

apitype No string | xml | json string

 * Parameter required only on key-based API endpoints. See API Endpoints section above.

Required Parameter :: apikey

This is a required parameter when this method is called from the key-based API Endpoint: key-

api.passwordrbl.com. This parameter specifies the subscriber’s API Key to authorize access to the

API. The expected format is 40 hex characters.

NOTE: Calling the update-metric method from the key-based API endpoint does not increase the count

of your queries.

Required Parameter :: metric

This is a required parameter and the expected value is either “hit” or “miss.” This parameter specifies

which count is incremented: the count of blacklist query matches (hit) or the count of queries that

resulted in a no-match (miss). Each time this method is called, the associated metric is increased by

one.

Required Parameter :: trackingid

This is a required parameter. The expected format is 32 hex characters. Calling this method with a

specified TrackingID will increase the metric type count of the specified TrackingID as well as

 Version 4.20

aggregate metrics. Keeping metrics accurate allows for later reporting of these metrics using the

MyMetrics page of the Password RBL website.

Optional Parameter :: blacklistid

This is an optional parameter. The expected format is 32 hex characters. Calls that supply a

BlacklistID will increase the metrics (counts) associated with this BlacklistID. It is important to note, that

in order to update custom blacklist metrics, the call must also include a TrackingID. An error is returned

if a BlacklistID is provided but a TrackingID is not.

Optional Parameter :: apitype

This parameter designates what format you prefer to receive responses in. The default is String-format

but XML and JSON formats are also available. Response values are listed in the following table:

Parameter Default Response Format

String Yes A single integer [0 | 1] to indicate that the metric update process was
successful or not. A negative value is returned to indicate an error in the
submission to the API.

XML No Content-type: text/xml

<?xml version="1.0" encoding="utf-8" ?>
<xmlresponse>
 <returnint> [null | 0 | 1] </returnint>
 <returnbool> [null | “true” | “false”] </returnbool>
 <error_code> [null | 0 | negative integer value] </error_code>
 <error_text> [text explanation of error] </error_text>
</xmlresponse>

NOTE: If the submission is of valid syntax, the values of the <returnint> and
<returnbool> tags will have corresponding values to indicate success or
failure of the metric update process. The values of the <error_code> and
<error_text> tags will be null.

If the submission is of invalid syntax, or an error occurs, the <returnint> tag
will have a negative value, <returnbool> tag will be “error” and the
<error_code> and <error_text> tags will be filled with values that indicate the
type of error.

JSON No Content-type: application/json
{
 "jsonresponse":{
 "returnint": [-1 | 0 | 1] ,
 "returnbool": [“true” | “false” | “error”] ,
 "error_code": [null | 0 | negative integer value] ,
 "error_text": [empty string | text explanation of error]
 }
}

 Version 4.20

NOTE: If the submission is of valid syntax, the values of the “returnint” and
“returnbool” tags will have corresponding values to indicate success or
failure of the metric update process. The values of the “error_code” and
“error_text” tags will be null.

If the submission is of invalid syntax, or an error occurred, the “returnint” will
have a negative value, “returnbool” will be set to “error”, and the
“error_code” and “error_text” tags will be filled with values that indicate the
type of error.

 Version 4.20

Webservice API Method Specifications

Method: cbl-management

Description

Use this method call to manage the hash value entries in your custom blacklist.

GET request syntax

https://webservice.passwordrbl.com/cbl-management.php?[required_param]&[optional_params]

Parameter Listing

Parameter Required Format / Value Default

apikey Yes 40 hex characters [0-9,a-f] n/a

action Yes quota | count | add | delete | empty n/a

blacklistid Yes 32 hex characters [0-9,a-f] n/a

hashvalue Depends on
action

40 or 64 hex characters [0-9,a-f] n/a

Required Parameter :: apikey

The apikey parameter is always required. This parameter specifies the subscriber’s API Key to

authorize access to the API. The expected format is 40 hex characters.

Required Parameter :: action

The action parameter is always required and can be one of the following: quota, count, add, delete, or

empty. Each action type instructs the API to perform a specified action against the custom blacklist

identified in the request. See below for a detailed explanation of each action type.

Quota

Submitting a query to the custom blacklist management method with the action type set to quota will

return the maximum number of blacklist entries that are allowed for the specified custom blacklist. If

 Version 4.20

you wish to increase the current quota assigned to your custom blacklist, simply use the contact form

on the main website. Additional subscription fees may apply.

The quota action returns a positive integer that represents the maximum number of custom blacklist

entries or a negative number to indicate error.

Count

Submitting a query to the custom blacklist management method with the action type set to count will

return the current number of blacklist entries in your custom blacklist.

It is important to note that Password RBL supports multiple different hashing types with custom

blacklists. Currently, PBKDF2 and SHA256 are supported, but others may be added in the future. It is

only necessary to populate the custom blacklist with the hash type you will use. However, it is not

detrimental to populate the custom blacklist with hashes of a type that you do not query. Therefore,

Password RBL always recommends keeping the population of the hash types exactly the same. If you

use the provided custom blacklist management tool, it populates both hash types, by default.

The count action will always return the maximum number of entries across all hash types.

For example, if you have 50 entries of type PBKDF2 and 100 entries of type SHA256, the count action

will return 100.

Add

The add action adds the provided hashvalue to the custom blacklist.

The add action returns 1 if the add was successful, 0 if the add was unnecessary (syntactically correct

but the entry was already in the blacklist), and a negative number to indicate error.

Delete

The delete action removes the provided hashvalue from the custom blacklist.

The delete action returns 1 if the removal was successful, 0 if the removal was unnecessary

(syntactically correct but the entry was not found in the blacklist), and a negative number to indicate

error.

Empty

The empty action removes all hash values of all types from the custom blacklist identified by the

accompanied blacklistID in a single request.

The empty action returns the number of entries that were removed from the custom blacklist if the

removal was successful, 0 if the removal was not successful, and a negative number to indicate error.

 Version 4.20

Required Parameter :: blacklistid

This parameter is always required. The expected format is 32 hex characters. This parameter

identifies which custom blacklist in the Password RBL system is to be operated upon by the current

request.

Parameter :: hashvalue

This parameter represents the hashed password that you will either add or remove from your custom

blacklist. The hashvalue parameter is therefore required when the requested action is either add or

delete, but is unused (and ignored if provided) when the action type is quota, count, or empty. The

expected format is 40 or 64 hex characters, depending on the hash function that was utilized to

produce the hash. PBKDF2 should output 40 hex characters whereas SHA256 produces 64 hex

characters. The method for producing the hashvalue for use by custom blacklists is exactly the same

as producing the hashvalues for use by the Query API call. Refer to the prior section on hashing

algorithms for specific usage information.

Method: rpt-getmetrics

Description

Use this method call to retrieve a metrics report for a provided trackingID. Metrics are recorded on a

daily basis. The API call will return a row or element for any day that queries were made. If no queries

were made on a day, nothing is returned for that day. If there are gaps in the results, this is because no

queries were made that day. The metrics are available in multiple formats.

GET request syntax

https://webservice.passwordrbl.com/rpt-getmetrics.php?[required_param]&[optional_params]

Parameter Listing

Parameter Required Format / Value Default

trackingid Yes 32 hex characters [0-9,a-f] n/a

apitype No string | xml | json | csvfile string

eol No crlf | lf | cr | br crlf

 Version 4.20

Required Parameter :: trackingid

This is a required parameter. The expected format is 32 hex characters. Use this parameter to specify

the trackingID that you would like to receive a metrics for.

Optional Parameter :: apitype

This parameter designates what format you prefer to receive responses in. The default is String-

format, which returns results in csv format as a direct response. XML and JSON formats are also

available. Use csvfile to retrieve the results as a separate file rather than direct response. Response

values are listed in the following table:

Parameter Default Response Format

string Yes CSV-formatted direct response as noted below. There is a separate row for
each day that query data is available. If no rows are returned, then the
specified trackingID has no data. If an error occurs, a text description of the
error is returned, followed by a comma and a negative value.

Content-type: text/plain

date,hits,misses,total
2019-01-23,1,2,3

XML No Content-type: text/xml

<?xml version="1.0" encoding="utf-8" ?>
<xmlresponse>
 <summary>
 <method>rpt-getmetrics</method>
 <response_count> # </response_count>
 <error_code> # </error_code>
 <error_text> </error_text>
 </summary>
 <response_data>
 <metric_entry>
 <date> YYYY-MM-DD </date>
 <hits> # </hits>
 <misses> # </misses>
 <total> # </total>
 </blacklist_entry>
 </response_data>
</xmlresponse>

NOTE: If the submission is valid syntax, the value of the
<response_count> tag represents the number of matching metric entries
returned and available in the <response_data> element. The value of the
<error_code> tag will be zero and <error_text> tag will be null.

 Version 4.20

If the submission is invalid syntax, or an error occurred, the
<response_count> tag will be NULL and the <error_code> and <error_text>
tags will be filled with values that indicate the type of error.

JSON No Content-type: application/json
{
 "jsonresponse": {
 "summary": {
 "method": "rpt-getmetrics",
 "response_count": #,
 "error_code": #,
 "error_text": ""
 },
 "response_data": [
 {
 "date": "YYYY-MM-DD",
 "hits": #,
 "misses": #,
 "total": #
 }
]
 }
}

NOTE: If the submission is of valid syntax, the values of the
“response_count” represents the number of matching metric entries
returned and available in the response_data array. The values of the
“error_code” and “error_text” tags will be null.

If the submission is of invalid syntax, “response_count” will be NULL and the
“error_code” and “error_text” elements will be filled with values that indicate
the type of error.

csvfile No This is the same, CSV-formatted output that the String type returns, but this
will produce the output as a file, rather than as a direct API response. The
syntax is noted below. If the file contains no data rows, this indicates no
data is available for this trackingID. A negative value and descriptive text
indicates an error in the submission to the API.

Content-type: text/plain
Content-Disposition: attachment

date,hits,misses,total
2019-01-23,1,2,3

 Version 4.20

Optional Parameter :: eol

This parameter designates what character(s) you prefer to use as end of line characters. This

parameter only have an effect when the APITYPE parameter is “string” or “csvfile.” If XML or JSON

response types are used, those specifications dictate which end of line character is used. End of line

character options are listed in the following table:

Value Default Response Format

crlf Yes Each line will end with a carriage return and line feed characters commonly
denoted as “\r\n”. This line ending is popular on the Windows platform.

cr No Each line will end with only a carriage return character, “\r”, which is

common on the Mac platform.

lf No Each line will end with a single line feed character, “\n”, which is common

on Unix and Linux-based systems.

br No Each line will end with an HTML-style “break” – which is a collection of four
characters, “
”.

 Version 4.20

Error Code Listing
Below is a listing of all the error codes that can be returned from the Password RBL API. This

reference is especially helpful if you use the default string type of API response from the query method,

since those return messages only include the code and not the added explanation.

Error Code Explanation

-402 Connection throttling due to bad API calls over threshold

The HTTPS GET request was dropped because there have been too many bad
formatted API calls from this IP address.

-403 Account is not active

The HTTPS GET request was dropped because the account associated with the
specified API Key is not active.

-404 Required parameter ‘apikey’ was not provided or was empty

The HTTPS GET request did not include the required URL parameter ‘apikey’ or the
parameter was specified but had a null value.

-405 Invalid length of HTTP parameter ‘apikey

The HTTPS GET request contained the required parameter ‘apikey but the specified
value was not the correct length specified by the API.

-406 Invalid format of HTTP parameter ‘apikey

The HTTPS GET request contains the required parameter ‘apikey but it was not the
correct length or included non-hex characters

-407 The supplied ‘apikey is not a valid ID but the format is valid

The HTTPS GET request contained the required parameter ‘apikey with valid syntax,
but the specified value is not a valid API Key.

-408 API Key usage is over quota for specified term

The HTTPS GET request was dropped because the specified API Key has been
used more than the specified quota.

-410 Required parameter ‘hashvalue’ was not provided or was empty

The HTTPS GET request did not include the required URL parameter ‘hashvalue’ or
the parameter was specified but had a null value.

-411 Invalid format of HTTP parameter ‘hashvalue’

The HTTPS GET request contains the required parameter ‘hashvalue’ but it was not
the correct length or included non-hex characters.

-412 Invalid format of HTTP parameter ‘apitype’

The HTTPS GET request contained the optional parameter ‘apitype’ but the
specified value was not one of the options specified by the API.

-413 Invalid length of HTTP parameter ‘trackingid’

The HTTPS GET request contained the optional parameter ‘trackingid’ but the
specified value was not the correct length specified by the API.

 Version 4.20

-414 Invalid format of HTTP parameter ‘trackingid’

The HTTPS GET request contained the optional parameter ‘trackingid’ but the
specified value contained non-hex characters.

-415 Invalid length of HTTP parameter ‘blacklistid’

The HTTPS GET request contained the optional parameter ‘blacklistid’ but the
specified value was not the correct length specified by the API.

-416 Invalid format of HTTP parameter ‘blacklistid’

The HTTPS GET request contained the optional parameter ‘blacklistid’ but the
specified value contained non-hex characters.

-417 Invalid length of HTTP parameter ‘cblonly’

The HTTPS GET request contained the optional parameter ‘cblonly’ but the specified
value was not the correct length specified by the API.

-418 Invalid format of HTTP parameter ‘cblonly’

The HTTPS GET request contained the optional parameter ‘cblonly’ but the specified
value was not equal to ‘true’ or ‘false’

-419 The parameter ‘cblonly’ was specified but ‘blacklistid’ was not.

The HTTPS GET request contained the optional parameter ‘cblonly’ but this option
requires that a custom blacklist ID also be included in the same HTTPS GET request

-421 The supplied ‘trackingid’ is not a valid ID but the format is valid

The HTTPS GET request contained the optional parameter ‘trackingid’ with valid
syntax, but the specified value is not a valid Tracking ID.

-422 The supplied ‘blacklistID’ is not a valid ID but the format is valid

The HTTPS GET request contained the optional parameter ‘blacklistid’ with valid
syntax, but the specified value is not a valid Blacklist ID.

-423 Required parameter ‘hashtype’ was not provided or was empty

The HTTPS GET request did not include the required URL parameter ‘hashtype’ or
the parameter was specified but had a null value.

-424 Invalid length of HTTP parameter ‘hashtype’

The HTTPS GET request contained the parameter ‘hashtype’ but the provided value
was not the correct length.

-425 Invalid format of HTTP parameter ‘hashtype’

The HTTPS GET request contained the parameter ‘hashtype’ but the provided value
was not one of the valid options.

-426 Invalid length of HTTP parameter ‘eol’

The HTTPS GET request contained the parameter ‘eol’ but the provided value was
not the correct length.

-427 Invalid format of HTTP parameter ‘eol’

The HTTPS GET request contained the parameter ‘eol’ but the provided value was
not one of the valid options.

 Version 4.20

-428 Invalid length of HTTP parameter ‘pphashvalue’

The HTTPS GET request contained the parameter ‘pphashvalue’ but the provided
value was not the correct length.

-429 Invalid format of HTTP parameter ‘pphashvalue

The HTTPS GET request contained the optional parameter ‘’pphashvalue’ but the
specified value contained non-hex characters.

-430 Invalid format of HTTP parameter ‘threshold’

The HTTPS GET request contained the optional parameter ‘threshold’ but the
provided value was not a valid integer.

-432 Invalid length of HTTP parameter ‘pphashprefix’

The HTTPS GET request contained the parameter ‘pphashprefix’ but the provided
value was not the correct length.

-433 Invalid format of HTTP parameter ‘pphashprefix’

The HTTPS GET request contained the optional parameter ‘’pphashprefix’ but the
specified value contained non-hex characters.

-451 Required parameter ‘action’ was not provided or was empty

The HTTPS GET request did not include the required parameter ‘action’ or the
parameter was specified but had a null value.

-452 Invalid format of HTTP parameter ‘action’

The HTTPS GET request contained the required parameter ‘action’ but the specified
value was not one of the options specified by the API

-453 Required parameter ‘blacklistid’ was not provided or was empty

The HTTPS GET request did not include the required parameter ‘blacklistid’ or the
parameter was specified but had a null value.

-454 Invalid length of HTTP parameter ‘blacklistid’

The HTTPS GET request contained the required parameter ‘blacklistid’ but the
specified value was not the correct length specified by the API.

-455 Invalid format of HTTP parameter ‘blacklistid’

The HTTPS GET request contained the parameter ‘blacklistid’ but the specified
value contained non-hex characters.

-456 The supplied ‘blacklistid’ is not a valid ID but the format is valid

The HTTPS GET request contained the optional parameter ‘blacklistid’ with valid
syntax, but the specified value is not a valid Blacklist ID.

-457 There was an error executing the add command

This is a generic error that arises during the beginning processing of the XXX
command, or if there is unexpected data returned from the backend database. If you
receive this error, please contact us using the form on the website so we can look
into this.

 Version 4.20

-458 There was an error executing the add command

This error occurs if the hashvalue could not be added to the database. This would
occur if communication was interrupted midstream or a configuration error. Please
contact us if you receive this error.

-459 Blacklist entry quota exceeded

This error occurs if the custom blacklist has reached its maximum number of entries
and an adding an additional entry was attempted. Contact us if you would like to
increase your quota.

-460 There was an error executing the delete command

This error occurs if a database deletion was unsuccessful. If this error persists,
please contact us.

-461 There was an error executing the empty command for pbkdf2 entries.

This error database command to delete all pbkdf2 blacklist entries fails. If this error
persists, please contact us.

-462 There was an error executing the delete command for sha256 entries.

This error database command to delete all sha256 blacklist entries fails. If this error
persists, please contact us.

-470 Required parameter ‘trackingid was not provided or was empty

The HTTPS GET request did not include the required URL parameter ‘trackingid or
the parameter was specified but had a null value.

-501 Unable to connect to database

This is an internal error and occurs if the initial database connection fails.

-502 Unable to connect to database

This is an internal error and occurs if the database connection fails during API
processing.

-510 Encountered a problem initializing connection to pwnedpasswords API

This is an internal error and occurs if the https connection fails during initialization
phase.

-511 Encountered a problem connecting to pwnedpasswords API

This is an internal error and occurs if the https connection to the pwnedpasswords
API fails during processing.

-520 Could not validate client IP address

This is an internal error and occurs if the client IP address does not validate as a
IPv4 address.

-521 Internal connection throttling error

This is an internal error would only occur if there is a failure determining if a client
connection should be throttled.

-522
-523
-524
-525

Internal error processing API key

These are internal errors that only occur if there is a failure processing the API key,
lookup, usage, quota, etc.

 Version 4.20

 Version 4.20

API Version History

Version Notable Changes

Current
Version

Extended API KEY required parameter to cbl-management API call

4.10 Automatic API quota increases when API key has hit the existing maximum

4.00 Added new endpoint that authorizes access based on API KEY instead of IP
address

3.30 Added new rpt-getmetrics API call for accessing metrics data
Non-critical parsing bugfix

3.20 Added option for additionally querying PwnedPasswords blacklist
Non customer-facing code improvements

3.10 Added XML and JSON formatted responses to prefix-query and update-metric
method calls.
Add whitespace formatting to XML and JSON responses to all query API methods

3.00 Add prefix-query method to allow queries with only a partial hash value provided
Add update-metric method to allow updating metrics without query

2.20 Added ‘cblonly’ parameter to control which blacklists to search when also using a
Custom Blacklist.

2.10 Added metrics tracking on Custom Blacklists when a trackingID is also specified

2.00 Added Custom Blacklists and new “webservice” API Endpoint

1.60 Change default hashing algorithm to PBKDF2; SHA256 still supported for backwards
compatibility

1.50 Change API parameter ‘sourceID’ to ‘trackingID’ to unify naming across offerings

1.41 Enhanced error messages with clear language

1.40 Enhanced verification and error reporting associated with ‘sourceID’ / ‘trackingID’
parameter

1.31 Enhanced JSON formatting output

1.30 Added JSON formatted API responses

1.20 Added ‘sourceID’ parameter in order to track metrics if customers decide to provide
an optional tracking identifier to their queries.

1.10 Maintenance release; no notable customer-facing changes.

1.00 Original version

